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On the L e a s t - S q u a r e s  Plane T h r o u g h  a Set of Points* 
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A recent discussion by Schomaker et al. of the eigenvalue equation determining the best least- 
squares plane through a set of points is extended. A non-diagonal weight matr ix is introduced, the 
errors associated with the coefficients of the plane are discussed, a criterion for the rejection of a given 
set as co-planar is given, and a more general form of the equations, valid for the case where certain 
restrictions are placed on the plane, is presented. 

Introduction 

In  a recent paper ,  Schomaker ,  Waser ,  Marsh & Berg- 
m a n  (1959, hereinaf ter  referred to as SWMB) have  
presented a der ivat ion of the  eigenvalue equat ion 
which leads to the  best least-squares plane through a 
set of points. A footnote points out  t h a t  the  weight 
for an individual  point  should be chosen inversely 
proport ional  to the  var iance of the  perpendicular  
dis tance of the  point  to the plane. I t  is becoming 
common practice in the  least-squares ref inement  of 
a tomic  positions in crystal  s t ructures  to inver t  the  
complete ma t r ix  of coefficients of the normal  equations 
to obta in  a var iance-covar iance  ma t r ix  (matr ix  of 
second moments)  which gives not  only the  errors in 
the  coordinates bu t  their  correlations as well. These 
correlations m a y  well be impor t an t  in determining the  
best plane and, in part icular ,  assessing its significance, 
and it would thus  seem desirable to introduce a non- 
diagonal  weight ma t r ix  into the scheme of SWMB. 
I t  is the  main  purpose of this paper  to present  the  
equat ions for such an  extended t r e a t m e n t  and  to 
discuss as well the  stat is t ical  significance of the  results 
thus obtained.  

Notat ion and m a t h e m a t i c a l  formulat ion  

I t  is desirable for compactness to use ma t r ix  nota t ion  
throughout ,  t The following symbols will be used 
throughout .  

_ .  _ _  

* Research performed under the auspices of the U.S. 
Atomic Energy Commission. 

t See Hamilton (1954). 

Bin, n ---- {bil}, a ma t r ix  of m rows and n columns. 
The subscripts m a y  be omit ted  af ter  a partic- 
ular  ma t r ix  is defined. 

B,j or b,s, the  element in the  i th row and  j t h  column 
of B. 

B~,m, the  t ranspose of the  ma t r ix  Bm,n. 

13n, n, the  adjoint  of a square  ma t r ix  Bn, n. 
B -1 the  inverse of a square ma t r ix  B , ,  n. 

n ~  n ,  

IBn,n], the  de te rminan t  of B. 
In, n, a uni t  matr ix .  
Ore,n, a ma t r ix  composed ent irely of zeroes. 
aj, j = 1, 2, . . . ,  n, a l inearly independent  set of vectors 

forming the basis for an n-dimensional  space. 
G-in, n - {a~. a~), the  metr ic  for this space. 
xn ,i 1 --- {x~}, a point  in this space. 
x~, the  coordinate of the point  x* referred to aj. 
Xn,~ - (x 1 x 2 . . . x p ) ,  a set of p points. 
m l ,  n, a vector  of coefficients describing the  plane 

r e x - d = 0 .  (1) 

D i, the  distance of the  point  x i to the  plane described 
by  m and d: 

D i = ( m x  i - d ) / (mGm')½.  (2) 

Dl, v =-- ( D1D2..  .Dv), the  set of p such distances for 
the  points X. 

At  this point  i t  becomes convenient  to introduce 
the  augmented  matr ices  
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-(:;) 
Y~+l,v = (y~y~. . .yv) .  

111, n+l  ~ ( m  d) .  

H~+~,~+~ = \Ox,n O~,~) . 

Equat ion  (1) becomes 
n y = O ,  (la) 

and  the point  to plane distance m a y  be wri t ten 

D i =  ny~/(nHn')½. (2a) 

We fur ther  define for any  set of quanti t ies  ql, q2, 
. . . ,  q~, a var iance-covar ianee  or moment  ma t r ix  
qM~,~ - - - { a i a j ~ i j } ,  where ai and aj are the s tandard  
deviations of the quanti t ies  q~ and  q~, and Q~ is their  
correlation coefficient. 

Let  us now introduce a weight ma t r ix  Wv, v, whose 
meaning will be discussed below. Keeping in mind  the 
normalizat ion condition 

n H n '  ~ m G m ' =  1,  (3) 

the funct ion to be minimized m a y  be wri t ten 

2' ~ D W D ' - -  2 [ n H n ' - -  1] (4 )  

and, by  methods identical  to those of SWMB, we 
obta in  the desired eigenvalue equation:  

(YWY' - 2H)n '  - (C - 2H)n '  = 0.* (5) 

The required n '  is the eigenvector corresponding to 
the m i n i m u m  eigenvalue ;t of (5). This will correspond 

to the largest eigenvalue of CH;  this eigenvalue m a y  
be obtained by  s tandard  numerical  procedures. Less 
computat ion is required, however, if we first reduce 
the secular equat ion to one of the n th  degree by solving 
the ( n + l ) s t  equat ion of (5) to obta in  (for n = 3 ,  for 
example) 

n4 --= d = -- (1/c44) (c ,uml  + c49m9-t- c48m3) (6) 

= F m ' / F  

and subst i tute  this  value of d in (5). If  we par t i t ion 
the ma t r ix  C in the following way:  

r-1 / (7) 
C - \Fl ,~ ~1,1 / 

the subst i tu t ion (6) reduces (5) to 

[ ( X W X ' - I " i ' / e ) -  2 G ] m '  = ( A -  aG)m '  = 0 .  (S) 

This is ident ical  to equat ion (11) of SWMB if the 
following changes are made  in equations (9) and (10) 

* The identity symbol ---- when used in this way may be 
interpreted as a definition of C. 

of SWMB to take account of the inclusion of non- 
diagonal weights.* 

d - [wkzx~mi] = mi 'x  ~ S~/VMB (9) 
[w~d 

with 

and 

[w~xi] 
[wkz] 

[ w k t X ~ X i ] m  J = A i ~ m j  = 2g*Jmj,  i = 1, . . . ,  n 

with SWMB (10) 
X~ _-- x i - ~ t  

The brackets [ ] now indicate  a double summat ion  
over all points k and l, and the summat ion  convention 
is retained for summat ion  over i and j .  At this  point,  
the simplif icat ion obtained by  using mat r ix  notat ion 
should be obvious. 

N a t u r e  of the  w e i g h t  m a t r i x  

Now from the general theory of least squares, we 
know tha t  the weight mat r ix  W is properly defined b y  

W~,,v ~- DM~,~, (11) 

where DM is the moment  ma t r ix  for the perpendicular  
distances of the points from the plane. I t  remains  to 
obtain an expression for VM in terms of XMsv, By, the 
moment  mat r ix  for the posit ional parameters.~ From 
the definit ion of D, we m a y  write 

D p ,  1 ~-~ 

Im1301 O131 Ixl / O1,  3 m l , 3  O 1 , 3  x 2 

• " " " - - d  

O1,8 O1, a m l ,  8 x~ 

- ~ v , 3 p ~ 3 v , 1 -  ~ ) v , 1  • ( ] 2 )  

Hence, by  the usual  formula for the propagation of 
error, we obta in  

a M  = gJ~XM~J~' 

-- {m(XM)i~m'} ,  (13) 

where (XM)iJ is the 3 x 3 block of XM corresponding 
to interactions between the points x* and xJ. In  order 
to make this point  completely clear, we present here 
the complete expression for the calculation of a single 
element  of ~M, viz., the  term in the moment  ma t r ix  
for the interact ion between points 1 and 2: 

* The notation in the remainder of this paragraph is that 
of SWMB and should not be confused with that of the present 
paper. 

In this section, we will for clarity confine our discussion 
to the case of n =  3. The generalization is obvious. 
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DM19" = (mlm2m3) (yl)a(x2)q(yl, x2) a(yl)a(y2)q(yl, y2) a(yl)a(z2)q(yl, z~.)] ms . 

(zl)a(xe)e(zl, xe) a(zl)a(ye)e(zl, y2) a(zl)a(z2)e(zl, z2)/ ma 

An a t t e m p t  to introduce the  weight ma t r ix  in this 
form into the initial var ia t ion  problem leads to non- 
linear equations in m ra ther  t h a n  to the simple 
eigenvalue expression. The best procedure,  as SWMB 
suggest, would thus  seem to be an i terat ive one, in 
which one assumes a vector  m ,  calculates the  weight  
ma t r ix  from equations ( l l ) ,  (12) and  (13), derives a 
new m ,  etc. In  most  cases of interest  in two or three 
dimensions, m will be approx imate ly  known by  
inspection, so t h a t  the  process will p robably  converge 
in no more t han  two iterations.  

Stat ist ical  s ignif icance of the derived quantit ies  

Having  derived the  vector  n, we would like to be able 
to es t imate  the  errors of its components.  For  this 
purpose, we require the  ma t r ix  ~M. Since 

and  hence 

Y'n' = D' 
Y W Y ' n '  - Cn '  = Y W D '  

n '  = C-~YWD ' (14) 

nM = C-1YWDMWY'C  -1 
= c -~. (15) 

Thus, as we expect,  the  momen t  ma t r ix  for the  der ived 
quant i t ies  is the  inverse of the  ma t r ix  of the normal  
equations.  Now suppose t h a t  we have  determined the  
best vector  no. We m a y  wish to determine whether  
another  vector  n is also an  acceptable solution. I f  the 
errors are assumed to be normal ly  distr ibuted,  the  
quan t i ty  

T "z = (no -- n)C(n0 - n) '  (16) 

has a dis tr ibut ion of the type  originally derived by  
Hotell ing (1931), which in this case m a y  be shown 
to have  the form (Kullback,  1959) 

Tg=nF(n, N) , (17) 

where F is the be t te r -known dis tr ibut ion of the  ratios 
of two Z 2 variates .  In  (17), n is the number  of derived 
paramete rs  (strictly, the rank  of C), and N is the  
number  of degrees of freedom which entered into the 
es t imat ion of W.* (N m a y  be the number  of reflec- 
tions by  which a crystal  s t ructure  is over-determined,  
for example.)  Tables of F are avai lable in most  recent 
statist ics texts  (see, for example,  Adams,  1955). I f  the  

* In the usuM least-squares adjustment, where the scaling 
of the weight matrix is dependent on the goodness of fit, 
the appropriate statistic is of course T2----nF(n, p--n), where 
p is the number of observational equations. This is not the 
case here, as the normalization of the weight matrix is assumed 
to arise not from the goodness of fit to the plane but from 
another source, presumably a least-squares refinement of the 
atomic positions. 

value of T 2 calculated by  (16) is less t h a n  the  t abu la r  
value for a specified significance level (often 95%), we 
m a y  conclude t h a t  the  difference between n and no 
is not  significant a t  this level. Since N will be gener- 
ally large, and since 

lim T ~ (n, N) = g 2 (n) ,  (18) 
. ,V- ->  o o  

the Z 2 test  m a y  also be used. Similarly, the  quan t i ty  
-~ D ' W D  will have  the  dis t r ibut ion of T 2 with p - n  

and N degrees of freedom. Here  again we may ,  with 
little error, use the Z e test .  I f  2 is less t h a n  the  tab-  
u la ted  value of Z ~' for a par t icu lar  significance level, 
we m a y  conclude t h a t  the deviat ions from coplanar i ty  
are not  s tat is t ical ly significant. 

All of the  conclusions of this section depend upon 
the proper weights having been used in the der ivat ion 
of the least-squares plane, and  it is pr imar i ly  for this 
reason t h a t  a correct der ivat ion of the  weights is 
impor tan t .  

T h e  l ea s t - squares  plane wi th  condit ions 

An interest ing extension of the  problem we have  been 
discussing is t h a t  of finding the best plane to fit  p 
points, fur ther  requir ing t h a t  the  plane pass exact ly  
through another  1 < n points. Let  the  coordinates of 
these 1 points be given by  Zn+l, z (corresponding to the  
Yn+l,p for the non-fixed points). The condition m a y  
then  be expressed 

nZ  = O1, z • (19) 

The solution of the  var ia t ion  problem (which will not  
be reproduced here) leads to the result  corresponding 
to (5): 

A 

{ c -  ~ [ i -  z (Z'CZ)- lZ'C]H}n'  = 0 .  (20) 

Again the most  convenient  method  of solution is to 

mul t ip ly  (20) by  C and find the  eigenvector corre- 
sponding to the  largest  eigenvalue of the  resulting 
matr ix .  A subst i tut ion similar to t h a t  in equat ion (6) 
m a y  still be used, but  the  expression is not  quite so 
s t ra ight forward.  Perhaps  the most  common example  
in three dimensions would be the problem of finding 
the best plane to fit  a given set with the restr ict ion 
t h a t  the plane pass through the origin. Subst i tu t ing 

Z ' = ( 0  0 0 - 1 )  

in (20), one finds af ter  some manipula t ion  t ha t  (20) 
reduces to 

( X W X ' -  2 G ) m ' = 0 ,  (21) 

a resul t  t h a t  is of course obvious f rom the  fact  t h a t  
d = 0 .  If  there is only one fixed point,  the  computa-  
t ional effort  will be minimized if one first  makes  a 
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change of origin to this point and then uses (21). 
The general expression (20) is most useful if there is 
more than one fixed point, particularly in spaces of 
higher dimension. 

N u m e r i c a l  e x a m p l e  

Most of the points in the preceding discussion will 
now be illustrated by an actual example. For  clarity 
of illustration, let us confine ourselves to a problem 
with n = 2 ,  i.e., we are to fit a line to points in the 
plane.* Let the following four points be given: 
(0-10, 0.48), (0.73, 0.52), (1.00, 0.70), and (1.30, 0.70). 
Let  us assume further tha t  the axes (al and a2) are 
orthogonal with unit  length such tha t  (,00) 

H =  0 1 0  . 

0 0 0  

Fur ther  assume tha t  we have been given a moment 
matr ix  for the parameters as follows: 

YWY' --- C = 
299.7548 235.5022 --391"3700) 
235.5022 405.9208 -786-5800 

--391-3700 -786.5800 1568-0000 

17775.72 --61423.64 --26376-10) 
= --61423.64 316845.05 143612.63 

26376.10 143612.63 66215.42 

ICI = 11858 x 102 

17775.72 --61423-64 0 )  
C H =  -61423-64 316845-05 0 . 

-26376.10 143612-63 0 

Choose as a first approximation to the unnormalized n, 

i n =  (1 - 5  . . . )  

CH in '  = 324894 ( 1 - 5 . 0 6 5  -2 .291) '  - 3 2 4 8 9 4  2n' 
CH an' = 328886 (1 -5-066 -2 .292) '  -= 328886 3n' 
CH 8n' = 328948 (1 -5 .066  -2 .292) '  

n =(0.1937 --0.9811 --0-4439) 

X M =  

"0.0100 0 0 0 0 
0 0.0004 0 0 0 
0 0 0.0009 0 0 
0 0 0 0.0064 0 
0 0 0 0 O.0025 
0 0 0 0.0056 0 
0 0 0 0 0 
0 0 0 0 0 

0 0 0 
0 0 0 
0 0 0 

0.0056 0 0 
0 0 0 

0-0100 0 0 
0 0.0100 0.0060 
0 0.0060 0.0100~ 

Thus, there is a correlation between the two coor- 
dinates of point four, and there is a correlation between 
the x2 coordinates of points two and three. The shapes 
of the error ellipses are shown in Fig. 1. The correla- 
tion between points 2 and 3 cannot of course be shown. 
The analysis follows: 

y = 
0.10 0.73 1.00 1.30 ) 
0.48 0.52 0.70 0.70 . 

- 1 . 0 0  - 1 . 0 0  - 1 . 0 0  - 1 . 0 0  

Assume as a first approximation tha t  

m = (0.1961 -0 .9806) .  
Then 

769 0 0 0 ) 
D M  = 0 6189 5385 0 

0 5385 9712 0 × 106 
0 0 0 9708 

W ~ bM-I = 

1300 0 0 0 ) 
0 312 -- 173 0 
0 -- 173 199 0 
0 0 0 103 

* The three-dimensional case will of course be of most 
interest to crystallographers. However, in order to present a 
simple figure, the two-dimensional case has been chosen here. 
The techniques are of course identical. 

and the equation of the line is 

0 .1937x-  0.9811y + 0.4439 = 0 .  

The values of the coefficients are nearly the same as 
those used in calculating the weights, so a recycling 
is not necessary. 

2 = 1185800/328948 = 3-60. 

The value of Z 2 for p-n=2 is 5.99 at  the 95% level 
of significance, and therefore any departures from 
linearity are not statistically significant. In  the alter- 
native method of solution indicated in equation (8), 
we proceed as follows: 

= ( -  391.3700 - 786.5800) F 

? 

r ' r /y 

A 

IAI 
Am' 

= 1568-0000 

( 9 7 . 6 8 5 3 1 9 6 . 3 2 9 0 )  
= 196.3290 394.5842 

(202.0695 39 .1732)  
= 3 9 . 1 7 3 2  11.3366 

( 11.3366 - -39 .1732)  
= --39.1732 202.0695 

= 756.24 

= 209.8m' for m----(0.1937 --0.9811) 

= 756-24/209-8=3-60 
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which, of course, agrees wi th  the  previous results. 
As an  example  of the use of the T 9 test, let us deter- 

mine the  l imits  of acceptabi l i ty  for lines parallel  to 
the  best least-squares line, fur ther  assuming tha t  
IY= 2, i.e., t ha t  our knowledge of the weights is ra ther  
poor: 

( n - n 0 )  = (0  0 dd) 

T ~ = 1568.0Ad ~. 

T 9. = 22'(2, 2) 

F(2,  2) at  the 95% confidence level = 19.0. 

Therefore, we mus t  reject  any  line for which T ~ ex- 
ceeds 2 x 1 9 = 3 8 :  

1568Ad ~. __< 38 
d d  <_ 0-16. 

Z'  = (½ ½ --1) 

Z ' C Z  = 1922.27 

z z ' =  ~ ~ -½ 
-½ -½ +1 

( ,.,840 -4.,3 23-,.97609 
Z _ _  = 118405" -4"13623 -1"97609 
Z ' C Z  -2 .63810  8.27246 3.95218 

[ ZZ 'C]  J ( - 0 . 1 8 4 0 5 4 . 1 3 6 2 3 0 )  
I -  Z , c z ,  H =  1.18405 5.13623 0 

2.36810 -8 .27246  0 

I -  H = / - 2 3 7 6 6  185298 0 
z'czJ \ -8385 80766 0 

This region of acceptabi l i ty  is indicated in :Fig. 1. 

a 

1 .i 

0"21~- I I I I I I I 1 ,~ a~ 
0.4 0.8 1-2 1.6 

Fig. 1. Illustration of numerical example. The ellipses of 
standard deviation are indicated. Line A is the best least- 
squares line without conditions. Line B is the best line 
which passes through the point (½, ½). The two line L and L" 
are the 95% limits of acceptability for lines parallel to A. 

As a f inal  example,  let us determine the best line 
through the same four points, assuming fur ther  tha t  
the line mus t  pass exact ly  through the point  (½, ½): 

and, by  a procedure ident ical  to tha t  in the preceding 
problem, we f ind 

n = (0.1299 --0.9915 --0-4308) 
2---- 6-3. 

Because of the single restraint ,  ~t is now dis t r ibuted 
approx imate ly  as g ~ wi th  three degrees of freedom. 
Now 

Z2(3) = 7.81 at  the 95% level;  

therefore the hypothesis  tha t  the  points  lie on a l ine 
passing through the  point  (½, ½) cannot  be rejected. 
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