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On the Least-Squares Plane Through a Set of Points*
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<

A recent discussion by Schomaker et al. of the eigenvalue equation determining the best least-
squares plane through a set of points is extended. A non-diagonal weight matrix is introduced, the
errors associated with the coefficients of the plane are discussed, a criterion for the rejection of a given
set as co-planar is given, and a more general form of the equations, valid for the case where certain

restrictions are placed on the plane, is presented.

Introduction

In a recent paper, Schomaker, Waser, Marsh & Berg-
man (1959, hereinafter referred to as SWMB) have
presented a derivation of the eigenvalue equation
which leads to the best least-squares plane through a
set of points. A footnote points out that the weight
for an individual point should be chosen inversely
proportional to the variance of the perpendicular
distance of the point to the plane. It is becoming
common practice in the least-squares refinement of
atomic positions in crystal structures to invert the
complete matrix of coefficients of the normal equations
to obtain a variance—covariance matrix (matrix of
second moments) which gives not only the errors in
the coordinates but their correlations as well. These
correlations may well be important in determining the
best plane and, in particular, assessing its significance,
and it would thus seem desirable to introduce a non-
diagonal weight matrix into the scheme of SWMB.
It is the main purpose of this paper to present the
equations for such an extended treatment and to
discuss as well the statistical significance of the results
thus obtained.

Notation and mathematical formulation

It is desirable for compactness to use matrix notation
throughout.t The following symbols will be used
throughout.

* Research performed under the auspices of the U.S.
Atomic Energy Cormission.
1 See Hamilton (1954).

Bn,n = {by}, a matrix of m rows and » columns.
The subscripts may be omitted after a partic-
ular matrix is defined.

By or by, the element in the ith row and jth column

of B.

B, m, the transpose of the matrix Bn, ».
By, », the adjoint of a square matrix By, 5.
B;%, the inverse of a square matrix By, ».

|Bn, 2|, the determinant of B.

I.,», & unit matrix.

Oum,n, a matrix composed entirely of zeroes.

a;, j=1,2, ..., n, alinearly independent set of vectors
forming the basis for an n-dimensional space.

G, = {a:-a;}, the metric for this space.

X; , = {«}}, a point in this space.

x, the coordinate of the point x? referred to ay.

Xn,p = (X! X2...%x?), a set of p points.

mi,n, & vector of coefficients describing the plane
mx—d=0. 1)
D, the distance of the point x? to the plane described
by m and d:
Di=(mx{—d)/(mGm’). (2)

Dy, p = (D'D2...D?), the set of p such distances for
the points X.

At this point it becomes convenient to introduce
the augmented matrices
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vi =(™
n+l,1 =\_1 .

Yri1,p = (y1y2...y7).
Ni,na = (md).
Gn,n O
Hn+1,n+1 = (O:;: 0 n’1> .
Equation (1) becomes
ny=0, (la)

and the point to plane distance may be written

Di=nyi/(nHn'). (2a)

We further define for any set of quantities ¢, g,
...»qr, a variance-covariance or moment matrix
M, . = {0i050i;}, where o; and o; are the standard
deviations of the quantities ¢; and g, and g;; is their
correlation coefficient.

Let us now introduce a weight matrix Wy, », whose
meaning will be discussed below. Keeping in mind the
normalization condition

nHn' = mGm’'=1, (3)
the function to be minimized may be written
F =DWD'— A[nHn'—1] (4)

and, by methods identical to those of SWMB, we
obtain the desired eigenvalue equation:

(YWY’ — AH)n' = (C— AH)n'=0.% (5)

The required n’ is the eigenvector corresponding to
the minimum eigenvalue 4 of (5). This will correspond

to the largest eigenvalue of CH; this eigenvalue may
be obtained by standard numerical procedures. Less
computation is required, however, if we first reduce
the secular equation to one of the nth degree by solving
the (n+1)st equation of (5) to obtain (for n=3, for
example)

ng =d = —(1/cas) (carm1 + cazama + Cazmsa) (6)
= —Im’[y

and substitute this value of d in (5). If we partition
the matrix C in the following way:

C = ((XWX,)n,n lnl)
rl.n V1.1

the substitution (6) reduces (5) to

(7

[(XWX'—T"T/y)—AG]m’ = (A—AG)m’ = 0. (8)

This is identical to equation (11) of SWMB if the
following changes are made in equations (9) and (10)

* The identity symbol = when used in this way may be
interpreted as a definition of C.
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of SWMB to take account of the inclusion of non-
diagonal weights.*

(W]
with .
=i (W]
and [e0k1]

[wuXiXm; = Atim; = Agiimg, i=1,...,n
: SWMB (10)
with Xi= o=

The brackets [ ] now indicate a double summation
over all points k and /, and the summation convention
is retained for summation over ¢ and j. At this point,
the simplification obtained by using matrix notation
should be obvious.

Nature of the weight matrix

Now from the general theory of least squares, we
know that the weight matrix W is properly defined by

(11)

where ?M is the moment matrix for the perpendicular
distances of the points from the plane. It remains to
obtain an expression for ?M in terms of ¥Msy, 3p, the
moment matrix for the positional parameters.i From
the definition of D, we may write

DM—I

Y2¥

W

»p =

mi,s 01,3 e 01,3 x1 1

01,3 m,3 ... 01_3 x2 1
D= ‘ —d

03,3 O1,3 ... my 3 X? Ul

= %p,3p£3p,l—‘@p,l . (12)
Hence, by the usual formula for the propagation of
error, we obtain

M = MEMM’

={m(*M)#m'}, (13)
where ({M)i7 is the 3x 3 block of ¥M corresponding
to interactions between the points x¢ and x7. In order
to make this point completely clear, we present here
the complete expression for the calculation of a single
element of ?M, viz., the term in the moment matrix
for the interaction between points 1 and 2:

* The notation in the remainder of this paragraph is that
of SWMB and should not be confused with that of the present
paper.

T In this section, we will for clarity confine our discussion
to the case of n=3. The generalization is obvious.
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o(x1)o(x2)o(x1, 22) o(x1)o(y2)e (21, y2) o(x1)o(22)p (%1, 22)\ /My

DM12 = (mlmzm;;)

o(y)o(@2)e (Y, 22) o(y)o(yz)e (Y, ¥2) o(y1)o(z2)e ¥y, 22) || me

o{z1)0o (x2)p(21, 22) o(2)o(y2)o(21, y2) o(2)o(z2)o(21, 22)) \m3

An attempt to introduce the weight matrix in this
form into the initial variation problem leads to non-
linear equations in m rather than to the simple
eigenvalue expression. The best procedure, as SWMB
suggest, would thus seem to be an iterative one, in
which one assumes a vector m, calculates the weight
matrix from equations (11), (12) and (13), derives a
new m, etc. In most cases of interest in two or three
dimensions, m will be approximately known by
inspection, so that the process will probably converge
in no more than two iterations.

Statistical significance of the derived quantities

Having derived the vector n, we would like to be able
to estimate the errors of its components. For this
purpose, we require the matrix "M. Since

Yn =D’
YWY'n’ =Cn’ = YWD’
n’ = C'YWD’ (14)
and hence
"M = C'YW?MWY'C™
=CL (15)

Thus, as we expect, the moment matrix for the derived
quantities is the inverse of the matrix of the normal
equations. Now suppose that we have determined the
best vector ng. We may wish to determine whether
another vector n is also an acceptable solution. If the
errors are assumed to be normally distributed, the
quantity
T?=(ng—n)C(ng—n)’ (16)
has a distribution of the type originally derived by
Hotelling (1931), which in this case may be shown
to have the form (Kullback, 1959)
T2=nF(n, N), (17)
where I is the better-known distribution of the ratios
of two y2 variates. In (17), n is the number of derived
parameters (strictly, the rank of C), and N is the
number of degrees of freedom which entered into the
estimation of W.* (N may be the number of reflec-
tions by which a crystal structure is over-determined,
for example.) Tables of F are available in most recent
statistics texts (see, for example, Adams, 1955). If the

* In the usual least-squares adjustment, where the scaling
of the weight matrix is dependent on the goodness of fit,
the appropriate statistic is of course T?=nF(n, p—n), where
p is the number of observational equations. This is not the
case here, as the normalization of the weight matrix is assumed
to arise not from the goodness of fit to the plane but from
another source, presumably a least-squares refinement of the
atomic positions.

value of T2 calculated by (16) is less than the tabular
value for a specified significance level (often 959%,), we
may conclude that the difference between n and ng
is not significant at this level. Since IV will be gener-
ally large, and since

lim 7%(n, N) = y2(n),

N-—>o00

(18)

the y2 test may also be used. Similarly, the quantity
4 = D'WD will have the distribution of 72 with p—=
and N degrees of freedom. Here again we may, with
little error, use the y2 test. If 4 is less than the tab-
ulated value of y2 for a particular significance level,
we may conclude that the deviations from coplanarity
are not statistically significant.

All of the conclusions of this section depend upon
the proper weights having been used in the derivation
of the least-squares plane, and it is primarily for this
reason that a correct derivation of the weights is
important.

The least-squares plane with conditions

An interesting extension of the problem we have been
discussing is that of finding the best plane to fit p
points, further requiring that the plane pass exactly
through another ! <= points. Let the coordinates of
these I points be given by Zy+1,: (corresponding to the
Y41, for the non-fixed points). The condition may
then be expressed

nZ=01,z. (19)

The solution of the variation problem (which will not

be reproduced here) leads to the result corresponding

to (8): N "
{C—A[1-Z(Z'CZ)"Z'CH}n'=0 . (20)

Again the most convenient method of solution is to

multiply (20) by C and find the eigenvector corre-
sponding to the largest eigenvalue of the resulting
matrix. A substitution similar to that in equation (6)
may still be used, but the expression is not quite so
straightforward. Perhaps the most common example
in three dimensions would be the problem of finding
the best plane to fit a given set with the restriction
that the plane pass through the origin. Substituting

Z'=(000 —1)

in (20), one finds after some manipulation that (20)
reduces to

(XWX’ — 2G)m’ =0, @1)

a result that is of course obvious from the fact that
d=0. If there is only one fixed point, the computa-
tional effort will be minimized if one first makes a
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change of origin to this point and then uses (21).
The general expression (20) is most useful if there is
more than one fixed point, particularly in spaces of
higher dimension.

Numerical example

Most of the points in the preceding discussion will
now be illustrated by an actual example. For clarity
of illustration, let us confine ourselves to a problem
with n=2, i.e., we are to fit a line to points in the
plane.* Let the following four points be given:
(0-10, 0-48), (0-73, 0-52), (1-00, 0-70), and (1-30, 0-70).
Let us assume further that the axes (a1 and ap) are
orthogonal with unit length such that

100
H={010].
000

Further assume that we have been given a moment
matrix for the parameters as follows:

(0-0100
0-

(=g

04

0 0-

(=3
©

M =

cocooco3oco
o 9
co8080c00
@2}
b

923
(=2]
2
coo8cocoo
[}
o

0
0
0
0
0
0
0

SO OOOQ

-

Thus, there is a correlation between the two coor-

dinates of point four, and there is a correlation between

the x» coordinates of points two and three. The shapes

of the error ellipses are shown in Fig. 1. The correla-

tion between points 2 and 3 cannot of course be shown.
010 073 1-00

The analysis follows:
1-30
048 052 070 0-70 .

v-(
—1:00 —1-00 —1-00 —1-00

Assume as a first approximation that

m = (01961 —0-0806) .
Then
%9 0 0 0
0 618 538 0
D . 6
M=\ o 5385 oz o | *10
0O 0 0 9708
1300 0 0 0
0 312 —173 0
_ DaA—-1 _
W="M"=| ¢ _173 199 0
o 0 0 103

* The three-dimensional case will of course be of most
interest to crystallographers. However, in order to present a
simple figure, the two-dimensional case has been chosen here,
The techniques are of course identical.
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299-7548  235-5022 —391-3700
YWY =C = 235-5022  405-9208 —786-5800
—391-3700 —786-5800 1568-0000
" 17775-72 —61423-64 —26376-10
C = | —61423-64 316845-05 143612-63
—26376-10 143612-63  66215-42
|C| = 11858 x 102

R 17775-72 —61423-64 0

CH == [ —61423-64 316845-056 0

—26376-10 143612-63 O

Choose as a first approximation to the unnormalized n,

n=(1 -5...)
CH n’ = 324804 (1 —5:065 —2:291) = 324894 °n’
CH ®n’ = 328886 (1 —5-066 —2-292) = 328886 °n’
CH 3n’ = 328048 (1 —5-066 —2-292)'
n =(0-1937  —0-9811 —0-4439)

Il

~

OO O

0-0056
0

QOO0 O O
QOO OOO

0-0100
0 0-0100 0-0060
0 0-0060 0-0100

and the equation of the line is
0-19372x—0-9811y40-4439=0 .

The values of the coefficients are nearly the same as
those used in calculating the weights, so a recycling
is not necessary.

A=1185800/328948 = 3-60 .

The value of y2 for p—n=2 is 5-99 at the 95% level
of significance, and therefore any departures from
linearity are not statistically significant. In the alter-
native method of solution indicated in equation (8),
we proceed as follows:

I =(—391-3700 —786-5800)

y = 1568:0000
Ty = (976853 1963290
Y =1 1963200  394-5842
A _ (2020695 301732
=\ 391732 113366
A _( 113366 —39-1732
=1-391732  202:0695
A = 175624
Am’ =  209-8m’ for m=(0-1937 —0-9811)
A= 756-24/209-8=3-60
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which, of course, agrees with the previous results. 7= % -1
As an example of the use of the T2 test, let us deter- , _ .
mine the limits of acceptability for lines parallel to Z'CZ = 1922-27
the best least-squares line, further assuming that T 1-%
N =2, i.e., that our knowledge of the weights is rather 7 = t 1 -1
poor: -% -3 +1
(n—nog) = (0 0 4d) 77 118405 —4-13623 —1-97609
T2 = 1568-04d2 — = 1-18405 —4-13623 —1-97609
T2 = 2F(2, 2) 7Z'CZ —2:63810 827246  3-95218
F(2,2) at the 95% confidence level = 19-0 . 72'C —0-18405 4-13623 O
[I— —,—] H = < —1-18405 5-13623 O)
Therefore, we must reject any line for which 72 ex- zcz 2-36810 —8-27246 0
oeeds 2 19=38: T 778 6996 —23766 0
1568442 < 38 C [I—- ~ ]H =|—23766 185298 O
Ad < 016, zcz —8385 80766 0

This region of acceptability is indicated in Fig. 1. and, by a procedure identical to that in the preceding
a problem, we find
2
s n
A

(0-1299 —0-9915 —0-4308)
6-3.

it

Because of the single restraint, A4 is now distributed
approximately as x2 with three degrees of freedom.

Now
22(3) = 7-81 at the 95% level;

therefore the hypothesis that the points lie on a line
passing through the point (3, ) cannot be rejected.
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